Neurocysticercosis in sub-Saharan Africa

Dr. Andrea-Sylvia Winkler, PhD
Department of Neurology
Technical University Munich
(Sero-)prevalence of cysticercosis (worldwide)

Worldwide 50 million people with cysticercosis (WHO 2005) = most frequent cerebral helminthosis

- Seroprevalences are highest in Mexico (44%) and India (24%).
- Community-based study (DANIDA) shows high seroprevalences of about 45% in Tanzania (rt-24h Ab-detecting ELISA).
- Antigen-ELISA was positive in about 17% of people.

- Seroprevalence in California 1.8% - more than 1000 NCC cases/year in USA.
- Reports from within Europe, mainly Eastern Europe, indicate 10 NCC cases/year (many cases not reported – no seroprevalence studies)
Prevalence of neurocysticercosis (worldwide)

- Ecuador: 14% of normal population (CT confirmed)
- Peru: 52% of all children with partial epilepsy
- South Africa: 50% of incident epilepsy cases
- Tansania: 20% of prevalent epilepsy cases

- 30% of people with epilepsy in endemic areas have got NCC (Ndimubanzi et al. 2010).
Prevalence of neurocysticercosis (sub-Saharan Africa)

- Median prevalence of epilepsy in SSA is 15/1000 (Preux and Druet-Cabanac 2005).
Prevalences of epilepsy from rural Africa

(n=30)

Prävalenz pro 1000

Äthiopien
Nigeria
Elfenbeink.
Senegal
Tansania
Togo
Burkina Faso
Benin
Mali
Tanzania
Uganda
Togo
Zambia
Tansania
Benin
Togo
Kenya
Togo
Madagaskar
Senegal
Benin
Liberia
Benin
Nigeria
Kamerun
Elfenbeink.
Kamerun
Elfenbeink.

Prevalences of epilepsy from rural Africa
(n=30)
Prevalence of neurocysticercosis
(sub-Saharan Africa)

- Median prevalence of epilepsy in SSA is 15/1000 (Preux and Druet-Cabanac 2005).
- Assume that 850 million people live in SSA (World bank 2011).
- Assume a global prevalence of NCC in PWE of almost 30% of PWE (Ndimubanzi et al. 2010).
Prevalence of neurocysticercosis (sub-Saharan Africa)

- Median prevalence of epilepsy in SSA is 15/1000 (Preux and Druet-Cabanac 2005).
- Assume that 850 million people live in SSA (World bank 2011).
- Assume a global prevalence of NCC in PWE of almost 30% of PWE (Ndimubanzi et al. 2010).

- 3.4-8.5 million people with epilepsy in SSA
- 1.02-2.5 million people with NCC based on epilepsy
Prevalence of neurocysticercosis (sub-Saharan Africa)

- Median prevalence of epilepsy in SSA is 15/1000 (Preux and Druet-Cabanac 2005).
- Assume that 850 million people live in SSA (World bank 2011).
- Assume a global prevalence of NCC in PWE of almost 30% of PWE (Ndimubanzi et al. 2010).

- 3.4-8.5 million people with epilepsy in SSA
- 1.02-2.5 million people with NCC based on epilepsy
- 3 million people with NCC based on all neurological symptoms
- In addition, 2.4 million people with latent NCC
Pathology of NCC

- Focal lesions (with and without inflammation)
- Encephalitis (rarely Meningitis < 10% of all cases)
- Infarcts
- Vasculitis
- Hydrocephalus
- Myelopathy
Classification of NCC

- Active (cysts)
- Transitional (granuloma and ring enhancing lesions)
- Inactive (calcifications)
- Parenchymal NCC
- Extraparenchymal NCC (ventricle, subarachnoid space)
Symptoms of NCC

- Symptomatic seizures
- Epilepsy
- Headache
- Increased i.c. pressure
- Focal neurological signs
- Psychiatric problems
- Learning difficulties

- Very sick patient with encephalitis!
Locally adapted classification for epilepsy

- Causes are different (e.g. infection, perinatal brain damage)
- Limited diagnostic possibilities (no EEG, MRT)
- Few specialized clinics
- Few trained personnel
- Limited medication
Epilepsy study in northern Tanzania

- Haydom Lutheran Hospital, northern Tanzania
- Recruitment of 346 people with epilepsy
- Recruitment phase 25 months (August 2002-September 2004)
- Screening of all patients with standardized questionnaires
ILAE classification of epileptic seizures (ICES)

I. Partial seizures (Seizures with a focal origin)
 1. Simple partial seizures (consciousness not impaired)
 2. Complex partial seizures (consciousness not impaired)
 3. Secondary generalized seizures

II. Generalized seizures
 1. Absences
 2. Myoclonic seizures
 3. Clonic seizures
 4. Tonic seizures
 5. Tonic-clonic seizures (Grand-mal)
 6. Atonic seizures

III. Unclassified epileptic seizures
focal signs or diffuse brain damage obvious

yes

no

onset outside 6-25 years

onset between 6-25 years
focal signs or diffuse brain damage obvious

- yes
 - diffuse brain damage (non-progressive)
 - focal signs/ focal neurology (progressive)
- no
 - onset outside 6-25 years
 - onset between 6-25 years
focal signs or diffuse brain damage obvious

- yes
 - diffuse brain damage (non-progressive)
 - further clinical work-up only in selected cases
 - focal signs/ focal neurology (progressive)
 - further clinical work-up
 - EEG/CT necessary
 - onset outside 6-25 years
- no
 - onset between 6-25 years
 - further clinical work-up only in selected cases
focal signs or diffuse brain damage obvious

- yes
 - diffuse brain damage (non-progressive)
 - further clinical work-up only in selected cases
 - close follow-up necessary
 - focal signs/ focal neurology (progressive)
 - further clinical work-up
 - EEG/CT necessary
 - close follow-up necessary
 - onset outside 6-25 years
 - further clinical work-up only in selected cases
 - close follow-up necessary
- no
 - onset between 6-25 years
 - close follow-up not necessary
focal signs or diffuse brain damage obvious

yes

- diffuse brain damage (non-progressive)
 - further clinical work-up only in selected cases
 - close follow-up necessary
 - drug of choice: 1.CBZ 2.PHT

- focal signs/ focal neurology (progressive)
 - further clinical work-up necessary
 - close follow-up necessary
 - drug of choice: 1.CBZ 2.PHT or PHB

- onset outside 6-25 years
 - EEG/CT necessary
 - close follow-up necessary
 - drug of choice: 1.CBZ 2.PHT or PHB

no

- onset between 6-25 years
 - further clinical work-up only in selected cases
 - close follow-up not necessary
 - drug of choice: children: PHT adults: PHB
Advantages of the SSA classification

- Easy to use also for untrained personnel
- No need of EEG and imaging
- Transferrable to the ILAE classification
- Quick therapeutic triage
- Choice of right antiepileptic medication
- Approximate prognostic estimation
Diagnostic algorithm for suspected NCC in SSA?

1. Epileptic seizures and epilepsy most likely due to NCC
2. CT scan
 - CT suggestive of NCC
 - Antigen ELISA
 - Positive
 - Confirmed as NCC
 - Negative CT scan refer back to the system
Diagnostic algorithm for suspected NCC in SSA?

Epileptic seizures and epilepsy most likely due to NCC

CT scan

CT suggestive of NCC

Antigen ELISA

Positive

Negative

Confirmed as NCC

Negative CT scan refer back to the system

Immunoblot

Positive

Negative
CT scan in SSA - why so important?

- Within a few weeks or months the situation in the brain can change for better or for worse.

- HIV status of the patients may play a role.

- If the number of cysts has increased, antihelminthnic treatment may harm the patient seriously.

- If the number of cysts has decreased, antihelminthnic treatment may be unnecessary altogether.

- Triaging of patients suitable for neurosurgery or those that would require special treatment regimes (subarachnoid/ventricular forms)
Therapy – when?

Factors that determine therapeutic approach in general:

- Localisation of cysts (intra- extraparenchymal)
- Stage of cysts (active, transitional, inactive)
- Number and size of cysts (single lesion – many lesions)
- Inflammatory response (contained – widespread)
- Severity of clinical symptoms
- Potential risk of future complications
Sentences to be retained when it comes to therapy?

- Do not treat asymptomatic cysts.
- Do not treat inactive lesions with antihelminthic drugs.
- Do not treat transitional lesion with antihelminthic drugs.
- Never use antihelminthic drugs in widespread inflammation.
- Never use antihelminthic drugs if cysts are scattered throughout the brain (encephalitis!).
- Subarachnoid and ventricular forms need special treatment considerations.
Symptomatic treatment

- Analgesics
- Steroids
- Antiepileptic drugs
Steroids

- Prednisolone: 1mg/kg/day p.o. or Dexamethasone 10-20 mg/d
- Length of treatment variable, according to symptoms
- At once and without antihelminthics in cases with cerebral oedema, signs of increased intracranial pressure, vasculitis, compression of the brainstem, spine or optic nerve.
- Antihelminthics may be given at a later point.
- In most parenchymal NCC together with antihelminthics; pre-treatment may be required; in subarachnoid forms high doses of both drugs and long treatment.
- Increased metabolism by antiepileptic medication
Antiepileptic medication

- Phenytoin, Phenobarbitone, Carbamazepine (usually well controlled with monotherapy on standard dosage)

- Therapy may be lifelong if calcifications are present.

- In active NCC after successful treatment for at least one year (no calcifications!) trial of tapering

- Additional antihelminthic medication reduces severity but not frequency of epileptic seizures (Garcia et al. 2004).
Antihelminthics (active NCC)

- Albendazole: 15 mg/kg per day x 8-15 days
- Praziquantel: 50 mg/kg per day x 8-15 days; short course: 100 mg/kg for one day!

- Albendazole is more effective than Praziquantel (better penetration into CNS)

- Increased metabolism by steroids and antiepileptic drugs (Praziquantel > Albendazole)

- Only in active NCC; be aware of sudden increased intracranial pressure with „sudden death“; Combination with steroids and control-CTs are essential!

- Contraindicated in encephalitis, increased intracranial pressure and ophthalmological cysticercosis
Surgery

- Ventricular form (endoscopically)

- Hydrocephalus shunting (mainly ventricular and subarachnoid form – prognosis in SSA poor)

- Accessible cysts with mass effect (e.g. Sylvian fissure)

- Potential danger of dissemination of cyst material

- Potential danger of hydrocephalus post-OP

- Perioperative risks (high in SSA)
Treatment algorithm for NCC

Parenchymal neurocysticercosis

- Active
 - Antihelminthics
 - Steroids
 - AED

- Transitional
 - Steroids
 - AED

- Inactive
 - (Steroids)
 - AED
Treatment algorithm for NCC

Parenchymal neurocysticercosis
- Active
 - Antihelminthics
 - Steroids
 - AED
- Transitional
 - Steroids
 - AED
- Inactive
 - (Steroids)
 - AED

Extraparenchymal neurocysticercosis
- Subarachnoid*
 - Antihelminthics
 - Steroids
 - (AED)
- Ventricular
 - Neurosurgery

* The racemose NCC form is a malignant version of the subarachnoid form.
Treatment algorithm for epileptic seizures

Active or transitional stage

- Initiate AED treatment – CT control in 3-6 months

 - Cysts not resolved with or without seizure recurrence
 - Maintain AED and perform control CT as above
 - Cysts resolved but seizure recurrence
 - Maintain AED at least for another year
 - Cysts resolved and no seizure recurrence
 - Withdraw AED
Treatment algorithm for epileptic seizures

Active or transitional stage

- Initiate AED treatment – CT control in 3-6 months

 - Cysts not resolved with or without seizure recurrence
 - Maintain AED and perform control CT as above
 - Cysts resolved but seizure recurrence
 - Maintain AED at least for another year
 - Cysts resolved an no seizure recurrence
 - Withdraw AED

Inactive (calcification) stage

- Initiate AED treatment

 - No seizure recurrence for one year
 - Withdraw AED
 - Seizure recurrence
 - Maintain on AED until no seizure recurrence for one year

Treatment algorithm for SSA according to availability of CT scans

- Epileptic seizures and epilepsy most likely due to NCC (narrow window between first seizure and first CT scan)
- Performance of CT scan (not older than a couple of months)
- CT scan possible – active NCC confirmed
Treatment algorithm for SSA according to availability of CT scans

- Epileptic seizures and epilepsy most likely due to NCC (narrow window between first seizure and first CT scan)

 - Performance of CT scan (not older than a couple of months)

 - CT scan possible – active NCC confirmed

 - Praziquantel and steroids (encephalitis steroids only)
Treatment algorithm for SSA according to availability of CT scans

- Epileptic seizures and epilepsy most likely due to NCC (narrow window between first seizure and first CT scan)

 - Performance of CT scan (not older than a couple of months)

 - CT scan possible – active NCC confirmed

 - Praziquantel and steroids (encephalitis steroids only)

 - Follow up with CT?

 - Follow up with serology?

 - Treatment for how long?

 - What to do with defaulters?

 - What to do with treatment failure?
Treatment algorithm for SSA according to availability of CT scans

1. **Epileptic seizures and epilepsy most likely due to NCC (narrow window between first seizure and first CT scan)**

2. **Performance of CT scan (not older than a couple of months)**

3. **CT scan not possible**
 - a) none available
 - b) financial constraints

4. **CT scan possible**
 - active NCC confirmed
 - Praziquantel and steroids (encephalitis steroids only)

5. **Follow up with CT?**

6. **Follow up with serology?**

Treatment options:

- Treatment with steroids (without antihelminthics) based on serology under very close observation by a specialist??

- Symptomatic treatment, i.e. AED only, and follow wait and see policy??

What to do with defaulters?

What to do with treatment failure?
Future?
Five important 80:20 rules

- Most people with NCC are asymptomatic: Symptomatic cases account for between 10% and 40% of all NCC cases (Carpio & Ross 2012 (medscape)).

- 20% of symptomatic cases will be due to active NCC (cysts etc); 80% due to calcifications.

- If symptomatic, seizures present in approx 80% (78%; Carabin et al. 2011).

- 30% of people with epilepsy in endemic areas have got NCC (Ndimubanzi et al. 2010).

- 80-90% have intraparenchymal forms and 20-10% have extraparenchymal forms.