Use of oxfendazole to control porcine cysticercosis in a high-endemic area of Mozambique

Alberto Pondja, Luís Neves, James Mlangwa, Sónia Afonso, José Fafetine, Arve Lee Willingham III, Stig Milan Thamsborg, Maria Vang Johansen

Presenter: Maria Vang Johansen

Parasitology, Health and Development Department of Veterinary Disease Biology Faculty of Health and medical Science University of Copenhagen
Background

In Mozambique, data on cysticercosis is scarce and fragmented

CESA project from 2006 – 2010

Prevalence and associated risk factors for *T. solium* cysticercosis in Angónia district, Mozambique assessed in 2009

1. *T. solium* cysticercosis is endemic in the region
 - Porcine Ag-ELISA\(_{B158/B60}\): 231/661 (35%)
 - Human Ag-ELISA\(_{B158/B60}\): 243/1723 (15%)

2. Increasing pig age and pig husbandry practices contribute significantly to PC transmission

\(T. solium\) cysticercosis is endemic in the region (Pondja et al. 2010)
Study objective

Evaluate the effectiveness of a single oral dose of 30 mg/kg of oxfendazole treatment for control of porcine cysticercosis
Methodology

• Approach to local authorities & population:
 – Community leaders (willingness to participate)
 – Basic ethical principles explained to participants
 – Willingness to raise study pigs
 – Informed consent
 – OIE’s Terrestrial Animal Health Code for the use of animals in research and education

Ethical clearance from scientific board at Veterinary Faculty, Eduardo Mondlane University
Methodology

A randomized controlled field trial

4 rural villages of Angónia district
(Camuetsa, Campessa, Ndaula, Lilanga)

216 pigs 4 month of age

Obtained from 54 litters from 54 farms in the area

T1: 54 pigs – treat OFZ month 4
T2: 54 pigs – treat OFZ month 9
C : 108 pigs – litter matched controls
30 randomly selected pigs (8 from T1, 8 from T2 and 14 from control group) purchased from villagers, slaughtered locally and dissected for assessment of *T. solium* cysticerci.

Methodology

- **4** day bleed all + treat T1
- **9** day bleed all + treat T2
- **12** day bleed all + kill 30

Oxfendazole: 30 mg/kg p.o. (Oxfen-C Beyer, South Africa).

Blood samples for Ag-ELISA collected before T1 (m 4), T2 (m 9) and month 12.

Ag-ELISA: B158/B60 (Dorney et al. 2002).
Results

Pig race: Landim
Males: 55%, Females 45%

46 pigs lost to follow up
(24 control, 12 T1 and 10 T2 group)

Baseline prevalence 5.1 % (95% CI = 2.6% – 8.9%)
no sig. diff between groups (p > 0.05)
Results - effectiveness

<table>
<thead>
<tr>
<th>Age</th>
<th>Control group</th>
<th>T1 group</th>
<th>T2 group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number tested</td>
<td>Prevalence (%)</td>
<td>Number tested</td>
</tr>
<tr>
<td>4 months</td>
<td>108</td>
<td>5.6</td>
<td>54</td>
</tr>
<tr>
<td>9 months</td>
<td>90</td>
<td>33.3</td>
<td>44</td>
</tr>
<tr>
<td>12 months</td>
<td>84</td>
<td>66.7</td>
<td>42</td>
</tr>
</tbody>
</table>

- **Control**: Significant increase from 4 to 9 and from 9 to 12 month ($p < 0.001$).
- **T1**: Increase from 4 to 12 but significantly lower than control ($p < 0.001$).
- **T2**: Significant increase from 4 to 9 months ($p < 0.001$) and significant decrease from 9 to 12 months ($p < 0.01$).
Results - incidence study

At baseline, 205 pigs from all groups were negative by Ag-ELISA

<table>
<thead>
<tr>
<th>Period</th>
<th>Number of cases per 100 pigs-month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control group</td>
</tr>
<tr>
<td>1 (between 1st and 2nd sampling)</td>
<td>2.2</td>
</tr>
<tr>
<td>2 (between 2nd and 3rd sampling)</td>
<td>11.5</td>
</tr>
</tbody>
</table>

- T1 and T2 had lower incidence rates than control during the follow-up (p < 0.05)
- All infected pigs at the time of treatment were found negative in the subsequent sampling round
Results - Multivariate logistic regression

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFZ-T1</td>
<td>0.14</td>
<td>0.05 - 0.36</td>
<td><0.001</td>
</tr>
<tr>
<td>OFZ-T2</td>
<td>0.05</td>
<td>0.02 - 0.16</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.02</td>
<td>0.47 - 2.22</td>
<td>0.95</td>
</tr>
<tr>
<td>Free range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.76</td>
<td>0.38 - 8.20</td>
<td>0.47</td>
</tr>
<tr>
<td>Village</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camuetsa</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campessa</td>
<td>1.12</td>
<td>0.34 - 3.68</td>
<td>0.85</td>
</tr>
<tr>
<td>Ndaula</td>
<td>1.09</td>
<td>0.40 - 2.95</td>
<td>0.87</td>
</tr>
<tr>
<td>Lilanga</td>
<td>1.06</td>
<td>0.23 - 4.81</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Conclusion

Treatment of pigs with oxfendazole in the last part of the fattening period is cost-effective in controlling porcine cysticercosis in endemic low-income areas but should be integrated with other control measures.
Acknowledgements

- Bayer-South Africa for providing the drug
- The Serviços Provinciais de Pecuária de Tete
- Serviços Distritais de Agricultura de Angónia
- Estação Zootécnica de Angónia
- Community authorities
- Pig farmers

- Danida - SLIPP-project (Securing rural Livelihoods through Improved smallholder Pig Production in Mozambique and Tanzania)