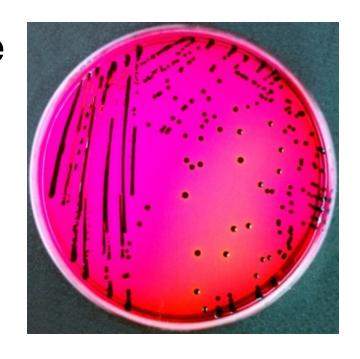
XLD according to ISO 6579: 2002

- Selective medium for <u>isolation</u>, third step of the standard protocol
- Included in the Annex D for primary production samples
- End pH should be 7.4 +/- 0.2 at 25°C
- Should be incubated at 37°C +/- 1°C
- Avoid isolation difficulties using 2 plates using a single loop, dry conscientiously the plates before use

XLD composition according to ISO 6579 : 2002


Yeast extract powder	3,0 g
Sodium chloride (NaCl)	5,0 g
Xylose	3,75 g
Lactose	7,5 g
Sucrose	7,5 g
L-Lysine hydrochloride	5,0 g
Sodium thiosulfate	6,8 g
Iron(III) ammonium citrate	0,8 g
Phenol red	0,08 g
Sodium deoxycholate	1,0 g
Agar	9 g to 18 g ¹⁾
Water	1 000 ml

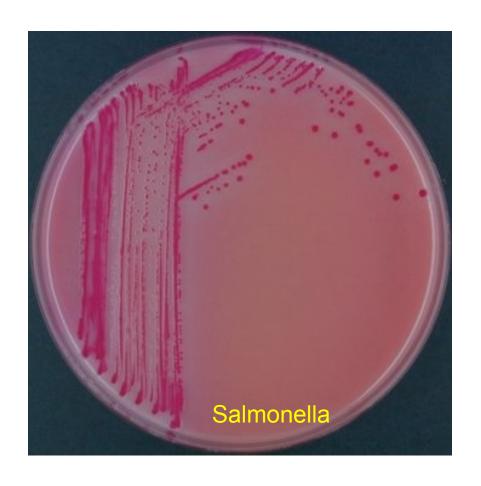
XLD according to ISO 6579: 2002

- Contains 2 inhibitors of Gram positive bacteria but at low concentration: desoxycholate and sodium thiosulfate
- Growth is promote firstly by Lactose or sucrose inducing acidity... Salmonella are negative for both
- Salmonella growth is promote by Lysine and peptone... alkalinisation
- Phenol red change in color around and under the colony
 yellow if acid deep red if basic
- Presence of the complex Ferric ammonium citrate / Sodium thiosulphite allows formation and precipitation of H2S in black
- => Salmonella appears after 24+/-3 h as large colonies with black centre on lightly transparent reddish zone

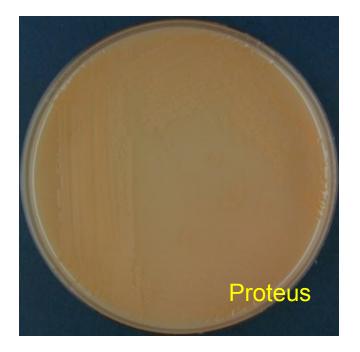
Salmonella on XLD according to ISO 6579 : 2002

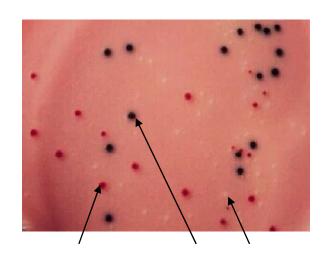
Salmonella in pure culture

Coliforms : lactose +



- One of the second medium for isolation
- Composition in g/L


peptone	8.0
sodium chloride	5.0
 sodium deoxycholate 	1.0
BCIG (Bromo-Chloro-Indoxy Galactopyranoside)	1.5
 proplylene glycol 	10.5
– agar-agar	15.0.


- The amount of nutritive substrates enable Enterobacteriaceae to multiply readily. The peptone use by the micro-organsims for their growth inducing a alkalic evolution of pH indicator: yellow brown colonies
- Sodium desoxycholate inhibits the accompanying Gram-positive flora.
- Adding propylene glycol to the culture medium.
 Salmonella forms acid with propylene glycol. The
 neutral red indicator change in deep red. Colonies
 are different in shape but deep pink/red in color.(As do
 some Citrobacter for example)

- In order to differentiate coliforms from Salmonellae, the medium contains a chromogenic indicator the presence of βgalactosidase splitting, a characteristic for coliforms.
- Coliform micro organisms grow as blue-green if the do not use the propylene glycol (coliforms) or blue-violet colonies if they do (some Citrobacter).
- Other Enterobacteriaceae and Gram-negative bacteria, such as Proteus, Pseudomonas, Shigella grow as colourless-yellow colonies.

Salmonella Enteritidis, E.coli, Proteus